

UNIVERSITY OF CALIFORNIA, DAVIS DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING

EME185A A02 W2016

The Winery Floor Cleaning Robot Team

 Author:
 Supervisor:

 Erick CAMPOS
 Jason MOORE

 Kyle CUBBA
 Jason MOORE

 Jerry Li
 Matthew LEFORT

 Jerry Li
 Farhad GHADAMLI

 Dai TRAN
 February 25,2016

Critical Design Review

Erick, Dai, Jerry, Kyle

OVERVIEW 1 INTRODUCTION	
 Why a Cleaning Robot for a Winery ? Sponsor Needs Scope of Our Project 	
 BODY Mapping How We Plan on Mapping ? 	

- Localization
- How We Plan on Localizing the Robots Position ?
- Safely Avoid Obstacles
- Robot Operation
- CONCLUSION
 - Schedule of Primary Tasks
 - Estimated Cost of Project Materials
- Q&A
- 5. APPENDIX

INTRODUCTION	Body	CONCLUSION	Q&A	Appendix
● 00	000000	00		

WHY A CLEANING ROBOT FOR A WINERY ?

- Currently, it takes six volumes of water to make one volume of wine, of which is entirely used in cleaning.
- Our sponsor requires an autonomous robot that cleans the crush pad of grape skins, stems, juice, residue, etc. with minimal water use.
- A prototype build by a previous Senior Design Team exists (the WEINbot) though it is not functional at the moment.

Figure: Area of Cleaning

INTRODUCTION $\circ \bullet \circ$	Body 000000	Conclusion 00	Q&A	Appendix
_				

SPONSOR NEEDS

- Minimal water use
- Cleans floor completely
- Autonomous operation
- Avoids static obstacles (walls) and dynamic obstacles (people walking in front)
- Safe to handle
- Easy to clean
- Battery powered and cleans entire area without being required to be charged
- Know when waste container is full
- Know when water container is empty

Figure: Winery Bot

INTRODUCTION	Body 000000	Conclusion 00	Q&A	Appendix

SCOPE OF OUR PROJECT

- Improving upon previous Senior Design Project
- Focus on automation of existing prototype:
 - Mapping
 - Localization
- Meet sponsors needs of:
 - Autonomous operation
 - Safety/Obstacle detection
- Design Specifications Met:
 - Clean 800 sq. feet within 1 hour
- Assumptions about the WEINbot:
 - It solves water usage problem (e.g. uses less water than hosing down grape waste into the drain)
 - The WEINbots brush/conveyor system picks up grape waste effectively
 - Batteries are large enough to clean crush pad on one charge

Critical Design Review

Erick, Dai, Jerry, Kyle

Introduction 000	BODY •00000	Conclusion 00	Q&A	Appendix
MAPPING				

- What is mapping?
 - In robotics, mapping is the process of generating a floor plan of the accessible area that a robot can move to
- Why is mapping important?
 - Allows a robot to determine location based needs.
 - Obstacle locations
 - What has been cleaned
 - Where it can travel
 - Known location at any given time

INTRODUCTION 000	BODY 00000	Conclusion 00	Q&A	Appendix

HOW WE PLAN ON MAPPING

- A map of the crush pad will be pre-programmed.
 - Wall boundaries
 - Permanent static obstacles
 - Landmarks
 - Parking zones for winery equipment
- Develop an occupancy grid
 - A graph paper like grid space which contains locations of objects in its cells.
 - Locations will be indicated by values of 0 (clear) 1 (obstacle)
 - Each grid will be the size of the robot + turning space

Introduction 000	BODY ○○●○○○	Conclusion 00	Q&A	Appendix
	ION			

- What is localization?
 - Localization refers to the robots position within its own occupancy grid.
- Why is localization important?
 - Allows robot to obtain necessary information while moving
 - Distance to obstacles
 - Where the robot has traveled

INTRODUCTION	Body	Conclusion	Q&A	Appendix
000	000000	00		

HOW WE PLAN ON LOCALIZING THE ROBOTS POSITION ?

- Dead-reckoning
 - Use the robots speed, orientation, and time traveled to estimate the displacement
 - Speed is determined by input voltage to the motor
 - Orientation is determined using a Digital compass
- Landmarks
 - Pre-programmed locations inside of occupancy grid
 - Landmarks send signal to robot indicating a precise location inside of the occupancy grid.
 - Confirms robot position inside occupancy grid with high accuracy.
- RFID (Radio-frequency identification) tags
 - Markers placed on ground
 - Communicate to receiver that will be mounted to the WEINbot

SAFELY AVOID OBSTACLES

- The WEINbot can avoid obstacles by reading input from sensors.
 - LIDAR mounted on front of robot
 - Provides distance data
 - Can be used to stop robot if object is detected within a specified threshold
 - Infrared Sensors
 - Similar to LIDAR
 - Several sensors will point in all directions around the robot
 - Bumper (pressure sensitive switch)
 - Mounted to front of robot
 - Will shut down robot completely i triggered

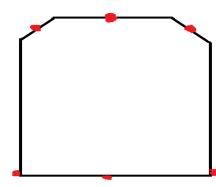


Figure: Sensors Positioning

Critical Design Review

Erick, Dai, Jerry, Kyle

INTRODUCTION 000	BODY ○○○○○●	Conclusion 00	Q&A	Appendix

ROBOT OPERATION

• Occupancy grid size

- x50 3.2x5sqft. grids
- Robot will move randomly until hit an obstacle where the turning direction will depend on:
 - Available directions to move
 - Density of dirty floor grids
- RFID density depends on dead reckoning error:
 - Sample average straight line error for 1 minute n=30+
 - Find 95% confidence error/meter traveled
 - Set maximum allowable error before location reset (landmark)

INTRODUCTION	Body	CONCLUSION	Q&A	Appendix
000	000000	•0		

SCHEDULE OF PRIMARY TASKS

By end of Winter Quarter	March	April	May
 Continue Beaglebone reading 	 Begin programming 	Serisors for 0	bject
 Research on RFID tags and Dead Reckoning 	motors (for wheels, conve etc.)	detection	map into
methods	Calibrate whe	els Place landma at winery	
Finish wiring WEINbot	Determine rol	pot -	Test run
 Find RFID density 	kinematics	 Program sen 	- improve us
 Learn about programming sensor and begin coding 	 Finalize area t robot will be bounded to 	hat Finish programmin motors, serv	

Table: Schedule of Primary Tasks

INTRODUCTION	Body	CONCLUSION	Q&A	Appendix
000	000000	0●		

ESTIMATED COST OF PROJECT MATERIALS

Item	Cost	Quantity	Subtotal
Infrared Sensors	15	7	105
RFID Tag	2	20	40
RFID Reader	35	1	35
Cable	10	1	10
Total			190

Table: Estimated Cost of Project Materials

Introduction 000	Body 000000	Conclusion 00	Q&A	Appendix
Q&A				

Int 00	RODUCTION 0	Body 000000	Conclusion 00	Q&A	APPENDIX
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 8 29 30 31 32	<pre>#This is the dem import Adafruit.Bi import time import Adafruit.Bi import Adafruit.Bi #WM. start(channe #Make variable fo blueRGB = "P8.1 redRGB = "P8.1 riTransmitter = " irTransmitter = " irReceiver = "P9 lightResistor = " GPIO. setup (blueRG GPIO. setup (greenRd GPIO. setup (irRece GPIO. setup (irRece GPIO. setup (iRece GPIO. output (b time. sleep (0. GPIO. output(b time. sleep (0. GPIO. output(b) time. sleep (0. GPIO. sle</pre>	onstration of using an BIO.GPIO as GPIO BIO.HVM as PVM BIO.ADC as ADC 1. duty, freq=2000, p r easier assigning pin 5" 6" 7" P9_14" 37" P9_14" 37" P9_40" B, GPIO.OUT) #RGB LED GB, GPIO.OUT) #RGB LED GB, GPIO.OUT) #RGB LED smitter, GPIO.OUT) #RGB LED smitter, GPIO.OUT) #Infran esistor, GPIO.IN) #this fuction will bli lueRGB, GPIO.IN(HIGH) 1) reenRGB, GPIO.HIGH) 1) lueRGB, GPIO.HIGH) 1) reenRGB, GPIO.ID(W) 1) 1)	alog sensors with PWM olarity=0) #syntax n number D nfrared transmitter Pi red receiver Pin		
33 34 C 1	time.sleep(0. itical OPSO GNARENDER(10		Erick, Dai, Jerry, Ky	vle	15